
Quantum Computing for

Computer Scientists

The gate quantum computation model

Created by Andrew Helwer

License

 This presentation is licensed under CC-BY-SA 4.0, meaning you are free to:

 Share – copy and redistribute the material in any medium or format

 Adapt – remix, transform, and build upon the material for any purpose, even commercially

 Under the following terms:

 Attribution – you must give appropriate credit to the licensor, provide a link to the license, and

indicate if changes were made. You may do so in any reasonable manner, but not in any way

that suggests the licensor endorses you or your use

 ShareAlike – If you remix, transform, or build upon the material, you must distribute your

contributions under the same license as the original

 Read more about the license here: https://creativecommons.org/licenses/by-sa/4.0/

https://creativecommons.org/licenses/by-sa/4.0/

Errata

 Link to talk: https://youtu.be/F_Riqjdh2oM

 At 0m54s in the talk I claimed quantum annealing and the gate model "might be

equivalent, but the jury's still out on that"; this statement is not quite correct, and you can

read more about the topic here.

 At 9m54s in the talk (and in an older version of the slides) I claimed all quantum operators

are their own inverses; while this is true of all the operators in this presentation, it is not true

in general.

 At 1h8m25s in the talk I failed to understand a student’s question about how we know the

entangled qbits decide how they will collapse at time of measurement, rather than

entanglement; this should have been answered with a reference to Bell test experiments.

https://youtu.be/F_Riqjdh2oM
https://cstheory.stackexchange.com/questions/17703/quantum-annealing-vs-adiabatic-quantum-computation

Changelog

 This presentation has been modified from its original form in the video as follows:

 Added “Classical to Quantum” slide

 Added slide defining superposition, and appendix slide on superposition as linear combination

 In Deutsch Oracle explanation, changed Input/Output labels to Control/Target

 Redid Deutsch Oracle circuit diagrams for additional clarity

 Expanded explanation of entanglement and its relation to Bell test experiments

 Added “Sources” slide crediting material I used to learn & create this presentation

 Fixed bit & gate order issues in entanglement & teleportation slides

 Many other minor stylistic changes

Why learn quantum computing?

 Quantum advantage expected this year

 Microsoft, Google, Intel, IBM all investing in quantum computer development

 Several exciting applications already known

 Efficiently factor large composite numbers, breaking RSA encryption (Shor’s algorithm, 1994)

 Search an unordered list in O(𝑛) time (Grover’s algorithm, 1996)

 Believed exponential speedup in simulating quantum mechanical systems

 Intellectually interesting – quantum mechanics is outside your intuition!

 Get a small glimpse of what you don’t know you don’t know

Learning objectives

 Representing computation with basic linear algebra (vectors and matrices)

 Qbits, superposition, and quantum logic gates

 The simplest problem where a quantum computer beats a classical computer

 Bonus topics: quantum entanglement and teleportation

Classical to quantum

Classical Computing

• States are bits (0 or 1)

• Gates are Boolean logic operators

0 ∧ 1 = 0 0 ∨ 1 = 1 ¬0 = 1

Quantum Computing

• States are vectors

• Gates are matrices

0 1
1 0

1

0
=

0

1

Representing classical bits as a vector

| ۧ0 =
1

0

One bit with the value 0, also written as | ۧ0 (Dirac vector notation)

One bit with the value 1, also written as | ۧ1

| ۧ1 =
0

1

Review: matrix multiplication

𝑥0 𝑦0
𝑥1 𝑦1

𝑎

𝑏
=

𝑥0𝑎 + 𝑦0𝑏

𝑥1𝑎 + 𝑦1𝑏

1 0 0 0
0 0 1 0
0
0

1
0

0 0
0 1

0
1
0
0

=

0
0
1
0

1 0 0 0
0 1 0 0
0
0

0
0

1 0
0 1

𝑎
𝑏
𝑐
𝑑

=

𝑎
𝑏
𝑐
𝑑

𝑥0 𝑦0 𝑧0 𝑤0

𝑥1 𝑦1 𝑧1 𝑤1

𝑥2
𝑥3

𝑦2
𝑦3

𝑧2 𝑤2

𝑧3 𝑤3

𝑎
𝑏
𝑐
𝑑

=

𝑥0𝑎 + 𝑦0𝑏 + 𝑧0𝑐 + 𝑤0𝑑
𝑥1𝑎 + 𝑦1𝑏 + 𝑧1𝑐 + 𝑤1𝑑
𝑥2𝑎 + 𝑦2𝑏 + 𝑧2𝑐 + 𝑤2𝑑
𝑥3𝑎 + 𝑦3𝑏 + 𝑧3𝑐 + 𝑤3𝑑

Operations on one classical bit (cbit)

1 0
0 1

1

0
=

1

0
1 0
0 1

0

1
=

0

1
Identity 𝑓 𝑥 = 𝑥

Negation 𝑓 𝑥 = ¬𝑥
0 1
1 0

1

0
=

0

1
0 1
1 0

0

1
=

1

0

Constant-0 𝑓 𝑥 = 0

Constant-1 𝑓 𝑥 = 1

1 1
0 0

1

0
=

1

0
1 1
0 0

0

1
=

1

0

0 0
1 1

1

0
=

0

1
0 0
1 1

0

1
=

0

1

0 0

0 0

0 0

0 0

1 1

1 1

1 1

1 1

Reversible computing

 Reversible means given the operation and output value, you can find the input value

 For 𝐴𝑥 = 𝑏, given 𝑏 and 𝐴, you can uniquely find 𝑥

 Operations which permute are reversible; operations which erase & overwrite are not

 Identity and Negation are reversible

 Constant-0 and Constant-1 are not reversible

 Quantum computers use only reversible operations, so we will only care about those

Review: tensor product of vectors

𝑥0
𝑥1

⊗
𝑦0
𝑦1

=
𝑥0

𝑦0
𝑦1

𝑥1
𝑦0
𝑦1

=

𝑥0𝑦0
𝑥0𝑦1
𝑥1𝑦0
𝑥1𝑦1

𝑥0
𝑥1

⊗
𝑦0
𝑦1

⊗
𝑧0
𝑧1

=

𝑥0𝑦0𝑧0
𝑥0𝑦0𝑧1
𝑥0𝑦1𝑧0
𝑥0𝑦1𝑧1
𝑥1𝑦0𝑧0
𝑥1𝑦0𝑧1
𝑥1𝑦1𝑧0
𝑥1𝑦1𝑧1

1

2
⊗

3

4
=

3
4
6
8

0

1
⊗

0

1
⊗

1

0
=

0
0
0
0
0
0
1
0

Representing multiple cbits

| ۧ00 =
1

0
⊗

1

0
=

1
0
0
0

| ۧ01 =
1

0
⊗

0

1
=

0
1
0
0

| ۧ10 =
0

1
⊗

1

0
=

0
0
1
0

| ۧ11 =
0

1
⊗

0

1
=

0
0
0
1

ۧ|4 = | ۧ100 =
0

1
⊗

1

0
⊗

1

0
=

0
0
0
0
1
0
0
0

 We call this tensored representation the product state

 We can factor the product state back into the individual state representation

 The product state of 𝑛 bits is a vector of size 2𝑛

Operations on multiple cbits: CNOT

 Operates on pairs of bits, one of which is the “control” bit and the other the “target” bit

 If the control bit is 1, then the target bit is flipped

 If the control bit is 0, then the target bit is unchanged

 The control bit is always unchanged

 With most-significant bit as control and least-significant bit as target, action is as follows:

𝐶 =

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

00

01

10

11

00

01

10

11

Operations on multiple cbits: CNOT

𝐶| ۧ10 = 𝐶
0

1
⊗

1

0
=

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

0
0
1
0

=

0
0
0
1

=
0

1
⊗

0

1
= | ۧ11

𝐶| ۧ11 = 𝐶
0

1
⊗

0

1
=

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

0
0
0
1

=

0
0
1
0

=
0

1
⊗

1

0
= | ۧ10

Operations on multiple cbits: CNOT

𝐶| ۧ00 = 𝐶
1

0
⊗

1

0
=

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

1
0
0
0

=

1
0
0
0

=
1

0
⊗

1

0
= | ۧ00

𝐶| ۧ01 = 𝐶
1

0
⊗

0

1
=

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

0
1
0
0

=

0
1
0
0

=
1

0
⊗

0

1
= | ۧ01

Recap

 We represent classical bits in vector form as 1
0

for 0 and 0
1

for 1

 Operations on bits are represented by matrix multiplication on bit vectors

 Quantum computers only use reversible operations

 Multi-bit states are written as the tensor product of single-bit vectors

 The CNOT gate is a fundamental building block of reversible computing

Qbits and superposition

 Surprise! We’ve actually been using qbits all along!

 The cbit vectors we’ve been using are just special cases of qbit vectors

 A qbit is represented by 𝑎
𝑏

where 𝑎 and 𝑏 are Complex numbers and 𝑎 2 + 𝑏 2 = 1

 The cbit vectors 1
0

and 0
1

fit within this definition

 Don’t worry! For this presentation, we’ll only use familiar Real numbers.

 Example qbit values:

1

2
1

2

1
2

3
2

−1

0

1

2
−1

2

Superposition

 When a qbit is in a state other than | ۧ0 or | ۧ1 , we say it is in superposition of | ۧ0 and | ۧ1

 The qbit is in some sense both | ۧ0 and | ۧ1 at the same time

 For the mathematically-inclined, superposition means linear combination

Measurement

 When we measure the qbit, it collapses to an actual value of 0 or 1

 We usually do this at the end of a quantum computation to get the result

 Critical point: measurement compels qbit to collapse to 0 or 1, it was not secretly 0 or 1 already

 If a qbit has value 𝑎
𝑏

it collapses to 0 with probability 𝑎 2 and 1 with probability 𝑏 2

 For example, qbit

1

2
1

2

has a
1

2

2
=

1

2
chance of collapsing to 0 or 1 (coin flip)

 The qbit 1
0

has a 100% chance of collapsing to 0, and 0
1

has a 100% chance of collapsing to 1

Multiple qbits

 Multiple qbits are similarly represented by the tensor product 𝑎
𝑏
⊗ 𝑐

𝑑
=

𝑎𝑐
𝑎𝑑
𝑏𝑐
𝑏𝑑

 Note that 𝑎𝑐 2 + 𝑎𝑑 2 + 𝑏𝑐 2 + 𝑏𝑑 2 = 1

 For example, the system

1

2
1

2

⊗

1

2
1

2

=

1

2
1

2
1

2
1

2

(note that
1

2

2
=

1

4
, and

1

4
+

1

4
+

1

4
+

1

4
= 1)

 There’s a ¼ chance each of collapsing to ۧ|00 , ۧ|01 , ۧ|10 , or ۧ|11

Operations on qbits

 How do we operate on qbits? The same way we operate on cbits: with matrices!

 All the matrix operators we’ve seen also work on qbits (bit flip, CNOT, etc.)

 Matrix operators model the effect of some device which manipulates qbit

spin/polarization without measuring and collapsing it

0 1
1 0

1
2

3
2

=

3
2
1
2

 There are several important matrix operators which only make sense in a quantum context

The Hadamard gate

 The Hadamard gate takes a 0- or 1-bit and puts it into exactly equal superposition

𝐻 ۧ|0 =

1

2

1

2
1

2

−1

2

1

0
=

1

2
1

2

𝐻 ۧ|1 =

1

2

1

2
1

2

−1

2

0

1
=

1

2
−1

2

The Hadamard gate

 The Hadamard gate also takes a qbit in equal superposition back into a 0- or 1-bit!

1

2

1

2
1

2

−1

2

1

2
1

2

=
1

0

1

2

1

2
1

2

−1

2

1

2
−1

2

=
0

1

 We can transition out of superposition without measurement!

 We can thus structure quantum computation deterministically instead of probabilistically

The unit circle state machine

1

0

−1

0

0

1

0

−1

1

2
1

2

1

2
−1

2

−1

2
1

2

−1

2
−1

2

1

0

−1

0

0

1

0

−1

1

2
1

2

1

2
−1

2

−1

2
1

2

−1

2
−1

2

X H

The unit circle state machine

1

0

−1

0

0

1

0

−1

1

2
1

2

1

2
−1

2

−1

2
1

2

−1

2
−1

2

X H X H X
1

0

−1

0

Recap

 Cbits are just a special case of qbits, which are 2-vectors of Complex numbers

 Qbits can be in superposition, and are probabilistically collapsed to cbits by measurement

 Multi-qbit systems are tensor products of single-qbit systems, like with cbits

 Matrices represent operations on qbits, same as with cbits

 The Hadamard gate takes 0- and 1-bits to equal superposition, and back

 We can think of qbits and their operations as forming a state machine on the unit circle

 Actually the unit sphere if we use complex numbers

The Deutsch oracle

 Imagine someone gives you a black box containing a function on one bit

 Recall! What are the four possible functions on one bit?

 You don’t know which function is inside the box, but can try inputs and see outputs

 How many queries would it take to determine the function on a classical computer?

 How many on a quantum computer?

The Deutsch oracle

 What if you want to check whether the unknown function is constant, or variable?

 Constant-0 & constant-1 are constant, identity & negation are variable

 How many queries would it take on a classical computer?

 How many on a quantum computer?

The Deutsch oracle

 How can it be done in a single query!? Superposition!

 First, we must define what each of the four functions look like on a quantum computer

 We have an immediate problem with the constant functions

Reversable-izing non-reversible functions

 We often need to compute non-reversible functions on quantum computers

 There is a standard solution! Consider non-reversible function 𝑓:

BB

Target

Control
ۧ|x

| ۧy | ۧy ⊕ 𝑓(| ۧx)

ۧ|x

BB

Target

Control
ۧ|x

| ۧ0 | ۧ𝑓(| ۧx)

ۧ|x

 We xor the function output with the target qbit, leaving the control qbit unchanged

 Think of the target qbit as an out-parameter for the function 𝑓

The Deutsch oracle: constant-0

Control

Target

ۧ|x

| ۧ0

| ۧx

| ۧ0

BB

The Deutsch oracle: constant-1

Control

Target

ۧ|x

| ۧ0

| ۧx

| ۧ1

BB

X

The Deutsch oracle: identity

Control

Target

ۧ|x

| ۧ0

| ۧx

| ۧx

BB

The Deutsch oracle: negation

Control

Target

ۧ|x

| ۧ0

| ۧx

| ۧ¬x

BB

X

The Deutsch oracle

 How do we solve it on a quantum computer in one query?

 If the black-box function is constant, system will be in state ۧ|11 after measurement

 If the black-box function is variable, system will be in state ۧ|01 after measurement

X

X

H

H

BB

H

H

ۧ|0

ۧ|0

Control

Target

The Deutsch oracle: preprocessing

1

0

−1

0

0

1

0

−1

1

2
1

2

1

2
−1

2

−1

2
1

2

−1

2
−1

2

Control qbit

1

0

−1

0

0

1

0

−1

1

2
1

2

1

2
−1

2

−1

2
1

2

−1

2
−1

2

Target qbit

The Deutsch oracle: constant-0

Control

Target

ۧ|x

| ۧ0

| ۧx

| ۧ0

BB

The Deutsch oracle: constant-0

1

0

−1

0

0

1

0

−1

1

2
1

2

1

2
−1

2

−1

2
1

2

−1

2
−1

2

Result: ۧ|11

1

0

−1

0

0

1

0

−1

1

2
1

2

1

2
−1

2

−1

2
1

2

−1

2
−1

2

Control qbit Target qbit

The Deutsch oracle: constant-1

Control

Target

ۧ|x

| ۧ0

| ۧx

| ۧ1

BB

X

The Deutsch oracle: constant-1

1

0

−1

0

0

1

0

−1

1

2
1

2

1

2
−1

2

−1

2
1

2

−1

2
−1

2

Result: ۧ|11

1

0

−1

0

0

1

0

−1

1

2
1

2

1

2
−1

2

−1

2
1

2

−1

2
−1

2

Control qbit Target qbit

The Deutsch oracle: identity

Control

Target

ۧ|x

| ۧ0

| ۧx

| ۧx

BB

The Deutsch oracle: identity

1

0

−1

0

0

1

0

−1

1

2
1

2

1

2
−1

2

−1

2
1

2

−1

2
−1

2

1

0

−1

0

0

1

0

−1

1

2
1

2

1

2
−1

2

−1

2
1

2

−1

2
−1

2

Result: ۧ|01

Control qbit Target qbit

The Deutsch oracle: identity

𝐶

1

2
−1

2

⊗

1

2
−1

2

= 𝐶

1

2
−1

2
−1

2
1

2

=
1

2

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

1
−1
−1
1

=
1

2

1
−1
1
−1

=

1

2
1

2

⊗

1

2
−1

2

The Deutsch oracle: negation

Control

Target

ۧ|x

| ۧ0

| ۧx

| ۧ¬x

BB

X

The Deutsch oracle: negation

1

0

−1

0

0

1

0

−1

1

2
1

2

1

2
−1

2

−1

2
1

2

−1

2
−1

2

1

0

−1

0

0

1

0

−1

1

2
1

2

1

2
−1

2

−1

2
1

2

−1

2
−1

2

Result: ۧ|01

Control qbit Target qbit

The Deutsch oracle

 We did it! We determined whether the function was constant or variable in a single query!

 Intuition: the difference within the categories (negation) was neutralized, while the

difference between the categories (CNOT) was magnified

 This problem seems pretty contrived (and it was, when it was published)

 A generalized version with an n-bit black box also exists (Deutsch-Josza problem)

 Determine whether the function returns the same value for all 2𝑛 inputs (i.e. is constant)

 A variant of the generalized version was an inspiration for Shor’s algorithm!

Full recap

 We learned how to model classical computation with basic linear algebra

 We learned about qbits, superposition, and the Hadamard gate

 We learned the Deutsch Oracle problem, where quantum outperforms classical

Bonus topics

 Quantum entanglement

 Quantum teleportation

Entanglement

 If the product state of two qbits cannot be factored, they are said to be entangled

1

2
0
0
1

2

=
𝑎

𝑏
⊗

𝑐

𝑑

𝑎𝑐 =
1

2
𝑎𝑑 = 0
𝑏𝑐 = 0

𝑏𝑑 =
1

2

 The system of equations has no solution, so we cannot factor the quantum state!

 This has a 50% chance of collapsing to ۧ|00 and 50% chance of collapsing to ۧ|11

Entanglement

How can we reach an entangled state? Easy!

𝐶𝐻1
1

0
⊗

1

0
= 𝐶

1

2
1

2

⊗
1

0
=

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

1

2
0
1

2
0

=

1

2
0
0
1

2

ۧ|0

ۧ|0

H

Entanglement

 What’s going on here? The qbits seem to be coordinating in some way

 Measuring one qbit also collapses the other in a correlated state

 This coordination happens even across vast stretches of space

 The coordination even happens faster than the speed of light! It is instantaneous.

 Entanglement breaks locality through faster-than-light coordination

 However – and this is the critical part – no information can be communicated

Entanglement

 Surely the qbits just decided at time of entanglement how they would collapse?

 This is called a “local hidden variable” theory, since the qbits carry information with them

 In 1964, John Bell proposed an experiment to differentiate between decide-at-

entanglement and decide-at-collapse theories; these are called Bell test experiments

 All such experiments have come down firmly against local hidden variables

 Locality is a lie; our universe’s physics is fundamentally nonlocal

Teleportation

 Quantum teleportation is the process by which the state of an arbitrary qbit is transferred

from one location to another by way of two other entangled qbits

 You can transfer qbit states (cut & paste) but you cannot clone them (copy & paste)

 This is called the No-cloning theorem

 The teleportation is not faster-than-light, because some classical information must be sent

Teleportation

| ۧψ

𝐴

𝐵

H

H

Z
| ۧψ

ۧ|0

ۧ|0
X

𝑍 =
1 0
0 −1

𝑇

Sources

Prof. Umesh Vazirani

CS191x MOOC

Further learning goals

 Deutsch-Jozsa algorithm and Simon’s periodicity problem

 Former yields oracle separation between EQP and P, latter between BQP and BPP

 Shor’s algorithm and Grover’s algorithm

 Quantum cryptographic key exchange

 How qbits, gates, and measurement are actually implemented

 Quantum error correction

 Quantum programming language design

Further reading

 Recommended textbook: Quantum Computing for Computer Scientists

 Others have recommended Quantum Computing: A Gentle Introduction

 For those with heavier math backgrounds, Quantum Computer Science: An Introduction

 The Microsoft Quantum Development Kit docs are nice [link]

 The development kit contains a quantum computer simulator!

 Exercise: implement the Deutsch Oracle tester in Q#

 Some skepticism about physically-realizable quantum computers [link]

 Noise might increase exponentially with the number of physical qbits

https://docs.microsoft.com/en-us/quantum/quantum-concepts-1-intro?view=qsharp-preview
https://www.quantamagazine.org/gil-kalais-argument-against-quantum-computers-20180207/

Appendices

 Mathematical definition of superposition

 Single-bit operations on multi-bit states

 Quantum teleportation math

Superposition as linear combination

 When a qbit is not in state | ۧ0 or | ۧ1 , we say it is in superposition of | ۧ0 and | ۧ1

 | ۧ0 and | ۧ1 are basis vectors

 Superposition means linear combination of some basis vectors

𝑎

𝑏
= 𝑎

1

0
+ 𝑏

0

1
= 𝑎| ۧ0 + 𝑏| ۧ1

Review: matrix multiplication associativity

𝐴𝐵 𝑥 = 𝐴(𝐵𝑥)

0 1
1 0

0 1
1 0

𝑎

𝑏
=

0 1
1 0

0 1
1 0

𝑎

𝑏

1 0
0 1

𝑎

𝑏
=

0 1
1 0

𝑏

𝑎

𝑎

𝑏
=

𝑎

𝑏

You only have to care about the cumulative effect of a series of gates; the specific

sequence changes nothing.

(𝐻𝑋𝐻)𝑥 = 𝑍𝑥
1

2
1 1
1 −1

0 1
1 0

1 1
1 −1

𝛼

𝛽
=

1 0
0 −1

𝛼

𝛽

1

2
1 1
1 −1

1 −1
1 1

𝛼

𝛽
=

𝛼

−𝛽

1 0
0 −1

𝛼

𝛽
=

𝛼

−𝛽

𝛼

−𝛽
=

𝛼

−𝛽

Review: tensor product of matrices

𝑎 𝑏
𝑐 𝑑

⊗
𝑤 𝑥
𝑦 𝑧 =

𝑎
𝑤 𝑥
𝑦 𝑧 𝑏

𝑤 𝑥
𝑦 𝑧

𝑐
𝑤 𝑥
𝑦 𝑧 𝑑

𝑤 𝑥
𝑦 𝑧

=

𝑎𝑤 𝑎𝑥
𝑎𝑦 𝑎𝑧

𝑏𝑤 𝑏𝑥
𝑏𝑦 𝑏𝑧

𝑐𝑤 𝑐𝑥
𝑐𝑦 𝑐𝑧

𝑑𝑤 𝑑𝑥
𝑑𝑦 𝑑𝑧

0 1
1 0

⊗
1 0
0 1

=
0

1 0
0 1

1
1 0
0 1

1
1 0
0 1

0
1 0
0 1

=

0 0
0 0

1 0
0 1

1 0
0 1

0 0
0 0

Single-bit operations on multi-bit states

 When applying gates to multi-bit states, we want to specify which qbit we’re modifying

 We use subscripts to identify the qbit

 The subscript value is the power of 2 associated with the significance of that qbit

 So 0, 1, 2, 3, 4, etc. since any binary number is written as 𝛼02
0 + 𝛼12

1 + 𝛼22
2 +⋯

 So 𝑋2 refers to the bit-flip operator which flips the most-significant qbit in a 3-qbit system

Single-bit operations on multi-bit states

What if we want to operate on a single bit in the product state? What matrix do we use?

Example - flip the least-significant bit:

𝑋0 ۧ|01 =
1 0
0 1

⊗
0 1
1 0

0
1
0
0

=

0 1
1 0

0 0
0 0

0 0
0 0

0 1
1 0

0
1
0
0

=

1
0
0
0

= ۧ|00

The operation we want is tensored with the identity matrix, in the position matching the

significance of that bit.

Single-bit operations on multi-bit states

We can also tensor multiple one-bit operators together to operate on bits in parallel.

Example – flip both bits:

𝑋1𝑋0 ۧ|01 =
0 1
1 0

⊗
0 1
1 0

0
1
0
0

=

0 0
0 0

0 1
1 0

0 1
1 0

0 0
0 0

0
1
0
0

=

0
0
1
0

= ۧ|10

Many useful operators are products of one-bit operators, but some (like CNOT) cannot be

factored that way.

Single-bit operations on multi-bit states

 CNOT gate subscripts are of the form 𝐶𝑐𝑡 where 𝑐 specifies control bit and 𝑡 target bit

 We can tensor CNOT matrices with the identity to operate on adjacent bits out of multiple

 Throughout the presentation, the CNOT gate we used was 𝐶10

 The 𝐶01 gate (with least-significant bit as control and most-significant target) is as follows:

𝐶01 =

1 0
0 0

0 0
0 1

0 0
0 1

1 0
0 0

00

01

10

11

00

01

10

11

Quantum teleportation math

| ۧψ

𝐴

𝐵

H

H

Z
| ۧψ

ۧ|0

ۧ|0
X

𝑍 =
1 0
0 −1

𝑇

Quantum teleportation math

𝐻2𝐶21𝐶10𝐻1
𝛼

𝛽
⊗

1

0
⊗

1

0
= 𝐻2𝐶21𝐶10

𝛼

𝛽
⊗

1

2
1

2

⊗
1

0

= 𝐻2𝐶21
𝛼

𝛽
⊗

1

2
0
0
1

2

= 𝐻2
1

2

𝛼
0
0
𝛼
0
𝛽
𝛽
0

=
1

2

𝛼
𝛽
𝛽
𝛼
𝛼
−𝛽
−𝛽
𝛼

Quantum teleportation math

1

2

𝛼
𝛽
𝛽
𝛼
𝛼
−𝛽
−𝛽
𝛼

=
1

2
|0 ۧ0

𝛼
𝛽 + ۧ|01

𝛽
𝛼

+ | ۧ10
𝛼
−𝛽 + | ۧ11

−𝛽
𝛼

The state right before measurement breaks down into four cases:

When Alice measures her two qbits, Bob’s qbit is forced into one of four states.

The bits measured by Alice determine the state into which Bob’s qbit was forced.

Bob needs to apply a transformation to get his qbit to the state that he wants.

Bob needs to know the values of Alice’s bits to know which transformation(s) to apply.

|0 ۧ0

|0 ۧ1

|1 ۧ0

| ۧ11

𝛼
𝛽

𝛽
𝛼
𝛼
−𝛽

−𝛽
𝛼

Quantum teleportation math

If Alice measured: Then Bob has: So Bob must apply:

|0 ۧ0
𝛼
𝛽 𝐼

𝛼
𝛽 =

1 0
0 1

𝛼
𝛽 =

𝛼
𝛽

|0 ۧ1 𝛽
𝛼

𝑋
𝛽
𝛼

=
0 1
1 0

𝛽
𝛼

=
𝛼
𝛽

| ۧ10
𝛼
−𝛽 𝑍

𝛼
−𝛽 =

1 0
0 −1

𝛼
−𝛽 =

𝛼
𝛽

|1 ۧ1 −𝛽
𝛼

𝑍𝑋
−𝛽
𝛼

=
1 0
0 −1

0 1
1 0

−𝛽
𝛼

=
𝛼
𝛽

Most-significant bit controls whether 𝑍 gate is applied, least-significant controls 𝑋 gate.

